Add to cart
Sale!

The Python for Traders Masterclass

Original price was: $499.00.Current price is: $29.99.

-94%

Price in official website: 499$

We offer in just : 29.99$

Product Delivery : You will receive download link in mail or you can find your all purchased courses under My Account/Downloads menu.

Add to Cart

The Python for Traders Masterclass
The Python for Traders Masterclass $499.00 Original price was: $499.00.$29.99Current price is: $29.99.

Instant Mega Links

  • Bitcoin and altcoins accepted
  • Affordable & Permanent Stored Courses
  • No hidden Charges
  • We care about your privacy
Guaranteed Safe Checkout

About Course:

The Python for Traders Masterclass

8 Modules

4 Projects

105 Lessons

248 Code Examples

34 Hours of Content

Module 1: Introduction

  • 1.1. Welcome to the Python for Traders Masterclass(2:14)PREVIEW
  • 1.2. Why learn to code as a trader?(7:15)PREVIEW
  • 1.3. Why should traders learn Python?(4:23)PREVIEW
  • 1.4. What will I gain from this course?PREVIEW
  • 1.5. What topics will be covered?PREVIEW
  • 1.6. Who is the intended audience for this course?PREVIEW
  • 1.7. How much finance knowledge do I need?(1:40)PREVIEW
  • 1.8. How much coding knowledge do I need?(1:37)PREVIEW
  • 1.9. Placement Quiz: Am I a good fit for this course?PREVIEW
  • 1.10. Module QuizSTART

Module 2: Python Fundamentals for Finance

  • 2.1. Python Installation and SetupSTART
  • 2.2. Running Python CodeSTART
  • 2.3. Basic Python(26:34)START
  • 2.4. Intermediate Python(5:07)START
  • 2.5. Advanced PythonSTART
  • 2.6. Data Science in PythonSTART
  • 2.7. Key library: PandasSTART
  • 2.8. Key library: NumPySTART
  • 2.9. Key library: MatplotlibSTART
  • 2.10. Key library: StatsmodelsSTART
  • 2.11. Key library: Scikit-learnSTART

Module 3: Working with Financial Data

  • 3.1. Introduction to Financial Data: Time Series and Cross-SectionsSTART
  • 3.2. Data Acquisition and Cleaning(18:09)START
  • 3.3. Time Series Analysis(13:38)START
  • 3.4. Understanding Stationarity(11:55)START
  • 3.5. Time Series ForecastingSTART
  • 3.6. Exploratory Data AnalysisSTART
  • 3.7. Section summarySTART

Module 4: How to Code and Backtest a Trading Algorithm

  • 4.1. So what is a trading algorithm?START
  • 4.2. Algorithm Design PrinciplesSTART
  • 4.3. Data Management Module(15:12)START
  • 4.4. Signal Generation Module(15:12)START
  • 4.5. Risk Management Module(10:58)START
  • 4.6. Trade Execution Module(10:27)START
  • 4.7. Portfolio Management Module(11:05)START
  • 4.8. Backtesting BasicsSTART
  • 4.9. Backtesting SoftwareSTART
  • 4.10. Advanced Backtesting TechniquesSTART
  • 4.11. Optimization and Parameter TuningSTART

Project 1: Research & Backtest a Realistic Trading Algorithm

  • Project Overview(6:57)START
  • Step 1: Getting Started on QuantConnect(6:53)START
  • Step 2: Formulate a StrategySTART
  • Solution: Formulate a StrategySTART
  • Step 3: Develop the AlgorithmSTART
  • Solution: Develop the AlgorithmSTART
  • Step 4: Run a Backtesting AnalysisSTART
  • Solution 4: Run a Backtesting AnalysisSTART
  • Project SummarySTART

Module 5: Automated Data Collection, Cleaning, and Storage

  • 5.1. Sourcing financial data(5:38)START
  • 5.2. Working with CSVsSTART
  • 5.3. Working with JSONSTART
  • 5.4. Scraping data from APIs(51:35)START
  • 5.5. Scraping data from websitesSTART
  • 5.6. Persisting data: files and databasesSTART
  • 5.7. Section summarySTART

Module 6: Analyzing Fundamentals in Python

  • 6.1. Structured vs. Unstructured DataSTART
  • 6.2. Types of Fundamental DataSTART
  • 6.3. Gathering & Cleaning Fundamental DataSTART
  • 6.4. Automated Screening & FilteringSTART
  • 6.5. Statistical Analysis of Fundamental DataSTART
  • 6.6. Natural Language Processing on News ArticlesSTART
  • 6.7. Natural Language Processing on Annual ReportsSTART
  • 6.8. Using LLMs for Natural Language ProcessingSTART

Module 7: Options & Derivatives Pricing Models

  • 7.1. Introduction to Options & DerivativesSTART
  • 7.2. Basics of Option PricingSTART
  • 7.3. The Binomial Options Pricing ModelSTART
  • 7.4. The Black-Scholes-Merton ModelSTART
  • 7.5. Monte Carlo Simulation for Option PricingSTART
  • 7.6. Introduction to Exotic OptionsSTART
  • 7.7. Interest Rate Derivatives and Term StructureSTART
  • 7.8. Implementing Finite Difference Methods for Option PricingSTART
  • 7.9. Volatility and Implied VolatilitySTART
  • 7.10. Advanced Topics and Modern Developments (Optional)START

Project 2: Volatility Surface Analysis Tool

  • Project OverviewSTART
  • Step 1: Fetching Options DataSTART
  • Solution: Fetching Options DataSTART
  • Step 2: Calculating Implied VolatilitiesSTART
  • Solution: Calculating Implied VolatilitiesSTART
  • Step 3: Plot a 3D Volatility SurfaceSTART
  • Solution: Plot a 3D Volatility SurfaceSTART
  • Project SummarySTART

Module 8: Introduction to High-Frequency Trading

  • 8.1. What is High Frequency Trading (HFT)?START
  • 8.2. Handling High-Frequency Tick DataSTART
  • 8.3. Latency Measurement and SimulationSTART
  • 8.4. Understanding the HFT Market Making StrategySTART
  • 8.5. Understanding Statistical Arbitrage with High-Frequency DataSTART
  • 8.6. Signal Processing for HFTSTART
  • 8.7. Real-time News ProcessingSTART
  • 8.8. Section summarySTART

Project 3: Design & Build a Limit Order Book

  • Project OverviewSTART
  • Step 1: Design the Data StructureSTART
  • Solution: Design the Data StructureSTART
  • Step 2: Add FunctionalitySTART
  • Solution: Add FunctionalitySTART
  • Step 3: Simulate Live OrdersSTART
  • Solution: Simulate Live OrdersSTART
  • Project SummarySTART

Capstone Project: Coding a Simple HFT Market Making Bot

  • Project OverviewSTART
  • Step 1: Define a System and Class ArchitectureSTART
  • Solution: Define a System and Class ArchitectureSTART
  • Step 2: Define the Event LoopSTART
  • Solution: Define the Event LoopSTART
  • Step 3: Implement the Data FeedsSTART
  • Solution: Implement the Data FeedsSTART
  • Step 4: Implement the Order ManagerSTART
  • Solution: Implement the Order ManagerSTART
  • Step 5: Add Alpha to the Pricing StrategySTART
  • Solution: Add Alpha to the Pricing StrategySTART
  • Project SummarySTART